TARUN SHARMA

LinkedIn: https://www.linkedin.com/in/tarun-sharma1/

Website: https://tarunsharma1.github.io/

Google Scholar: http://tinvurl.com/tarunsharma1

Phone: (401)-954-8483 Email: tarunsharma.pes@gmail.com

EDUCATION

Caltech, Pasadena

Sept 2018 – Present

PhD in Computation and Neural Systems

GPA: 4.2/4.0

Research: Computer vision applications using real-world noisy datasets, self-supervised learning, object detection, multi-object tracking, long-tailed datasets, animal behavior and ecological datasets.

PESIT, Bangalore, India

Aug 2013 – May 2017

B.E in Computer Science and Engineering

GPA: 9.4/10.0

Relevant Courses: Design and Analysis of Algorithms, Advanced Machine Learning, Software Engineering, Advanced Data Structures.

WORK EXPERIENCE

Machine Learning Engineer (MLE) Intern, **DoorDash** (Sunnyvale, CA)

June 2025 – Sept 2025

- Improved image search performance by 6–8% through fine-tuning embeddings and cleaning noisy data clusters.
- Engineered highly parallelized Databricks workflows to annotate millions of images using VLMs, to train and deploy image classification models, to audit and improve data quality using VLMs, and to fine-tune embeddings using metric learning.
- Built visualization and annotation tools leveraging online learning to prioritize samples, yielding a 30% accuracy improvement compared to random selection.
- Compared methods to identify human annotation errors using VLMs.
- Produced **optimized fine-tuning workflows** and **scalable annotation pipelines using VLMs**, which the team continues to use for training, **enabling sustained improvements in image search quality**.

Intern, Monterey Bay Aquarium Research Institute - MBARI (Monterey, CA)

June 2023 – Aug 2023

- Compared multiple self-supervised and semi-supervised computer vision approaches for using unlabeled data to
 improve classification performance in cases of real-world datasets exhibiting long tailed distributions.
- Trained a robust generalized animal detector currently being used by the in-house team. Achieved a 100% increase in
 balanced accuracy score for classification of animals when unlabeled data is used for semi-supervised contrastive pretraining.
 Published our results in a CVPR workshop paper.

Research Assistant, **Brown University** (Providence, RI)

Aug 2017 – June 2018

- Worked in the lab of Professor Thomas Serre on various projects involving computer vision research and applications to
 real world data. Examples include analyzing eye tracker video data using methods such as object detection, zebrafish
 behavioral analysis using tracking and pose estimation, predicting action potentials from videos using RNNs, and
 comparing computer vision models and human visual saliency maps.
- Each of these projects involved multiple rounds of collecting data, training computer vision pipelines, evaluating, bootstrapping, and refining performance. Resulted in publishing 3 papers and 1 preprint.

Intern, **SAP** (Bangalore, India)

Jan 2017 – June 2017

- Worked on the thematic segmentation of text data using recurrent neural networks to automatically break up company
 onboarding and training videos into short chapters for maximizing engagement.
- Proposed a strategy to combine the results of our machine learning model with additional contextual cues. This project resulted in a company patent.

Intern, MadStreetDen (Chennai, India)

May 2015 - Aug 2015

- Worked on using machine vision to make a navigational assistive system for the visually impaired that would run on a smartphone. Used traditional image processing algorithms such as dense optic flow and motion parallax cues to estimate approaching obstacles from a single camera. Also worked on object identification using neural networks and face recognition algorithms.
- We were successfully able to demonstrate a working prototype with real-time obstacle detection and classification using a single camera resulting in a published paper.

Skills: **Computer vision** – experience working real world noisy data, object detection, multi-object tracking, self-supervised learning, weak supervision, human in the loop training, online learning, long tailed distribution; machine learning, temporal data analysis and visualization. **VLMs** – making api calls to OpenAI for annotating/querying data.

Languages and Technologies: Python, PySpark, Java, Inkscape, Figma, Blender, Unity.

Frameworks and Libraries: PvTorch, OpenCV, SQL, Tensorflow, ROS.

Cloud Platforms: Databricks, AWS EC2, AWS Sagemaker.

Hardware: Raspberry Pi and add-on boards, sensors and cameras; Arduino and IMUs.

AI coding tools: **Cursor** and **GPT**.

DISSERTATION PROJECTS

Ant monitoring using computer vision, Prof. Joseph Parker

2023-Present

- Designed and deployed custom multi-sensor Raspberry Pi camera systems for large-scale video collection (30s/hour across multiple colonies), generating high-volume real-world datasets.
- Built an end-to-end data pipeline integrating motion detection for preprocessing, SQL for metadata management, blob
 detection to initialize and accelerate human annotations, and comparing computer vision methods for detection,
 tracking, and visualization of ant movement patterns.
- Evaluated and benchmarked detection and multi-object tracking algorithms for crowded scenes, addressing real-world
 challenges such as occlusion and high density.
- Developed robust **visualization and analysis methods** direction/angle estimation, velocity flow fields, and trajectory-based classification that yielded **novel ecological insights** on velvety tree ants, **despite imperfect tracking data**.

Flight and gaze stabilization system of fruit flies, Prof. Michael Dickinson

2018-2023

- Designed and built a rotating experimental arena with cameras, IMU sensors, and servo motors to study flight stabilization under controlled rotations.
- Created a **3D model** of a fly head from multi-slice scans in **Blender** and **generated synthetic training** data to enable single-view **3D head pose estimation**.
- Applied computer vision methods such as pose estimation and edge detection to quantify head and wing kinematics from
 video; used signal processing (Fourier transforms) to analyze responses and performed statistical modeling to
 demonstrate that stabilization response magnitude is a direct function of mechanosensory cell activity.
- Developed an unsupervised behavior discovery pipeline using pose estimation, continuous wavelet transforms, and clustering of spectral features with a watershed algorithm.

SELECTED PUBLICATIONS

- Tarun Sharma, Danelle E. Cline, Duane Edgington (2024) Making use of unlabeled data: Comparing strategies for marine animal detection in long-tailed datasets using self-supervised and semi-supervised pre-training. CVPR workshop proceedings 2024, pp. 1224-1233.
- Tarun Sharma, Julian M. Wagner, Sara M. Beery, William B. Dickson, Michael H. Dickinson, Joseph Parker (2024)
 Monitoring Social Insect Activity with Minimal Human Supervision. CVPR workshop proceedings 2024, pp. 1244-1253.
- Linsley, D., Eberhardt, S., **Sharma, T.**, Gupta, P., Serre, T., (2017) **What Are the Visual Features Underlying Human Versus Machine Vision?** Proceedings of *ICCV* Workshops 2017, pp. 2706-2714
- Sharma, T., Apoorva, J.H.M, Lakshmanan, R., Gogia, P., Kondapaka, M., (2016) NAVI: Navigation aid for the visually impaired. *IEEE Xplore*, doi:10.1109/CCAA.2016.7813856
- Kotri, J., Sharma, T., Kejriwal, S., Dasari, Y., Abinaya, S., (2019) Thematic Segmentation of Long Content using Deep Learning and Contextual Cues. US Patent. Patent number: US 10,339,922 B2
- Govindarajan, L., Sharma, T., Colwill, R., Serre, T., (2018) Neural Computing on a Raspberry Pi: Applications to Zebrafish Behavior Monitoring. Proceedings of VAIB 2018, Corpus ID: 52950335

LEADERSHIP ROLES

- Co-organizer of NeurIPS Workshop on Computational Sustainability: CompSust (2023), NeurIPS
- President of Neurotechers (2022 2023), Caltech
- Co-organizer and Instructor for Computer Vision for Ecology Summer School (2022-2024), Caltech
- TA for BE/Bi 106: Comparative Biomechanics (2021), Caltech